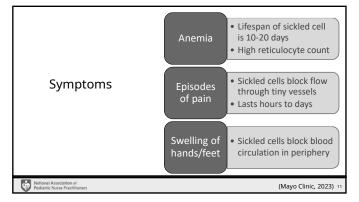
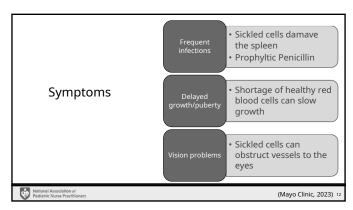
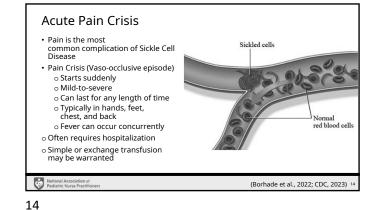
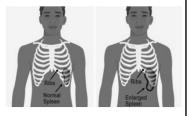

Sickle Cell Overview







Complications

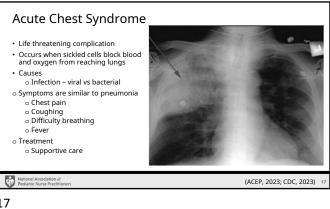


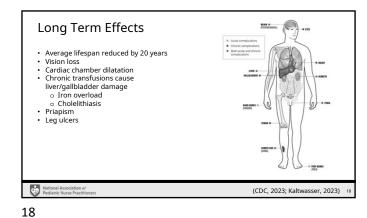
13

Splenic Sequestration

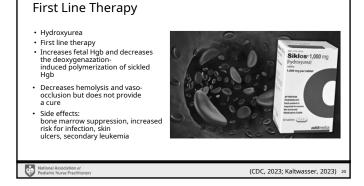
- Most commonly occurs between 6mo to 5yr old
- Occurs when an excessive amount of blood becomes trapped in the spleen
- Causes dangerous drop in circulating blood volume
- Diagnosed through clinical exam
- · Magement includes

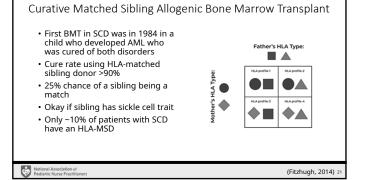
 - o Red blood cell transfusion \circ Splenectomy in extreme case


(Kane et al., 2023) 15

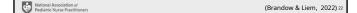

Stroke

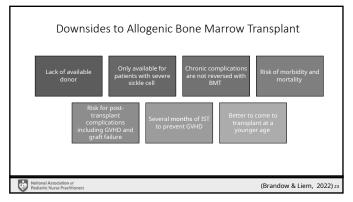
16


- Occurs if sickled cells get stuck in blood vessels of the brain
- Approximately 10% of children with sickle cell will have a symptomatic stroke
 - o Silent cerebral infarct occurs in 17%
- oTranscranial doppler ultrasound recommend every 2 years until 16 years of age


(CDC, 2023) 16

Treatment Options

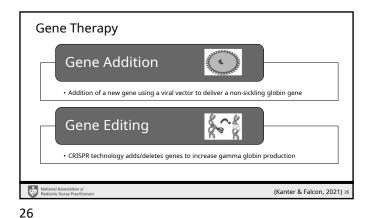


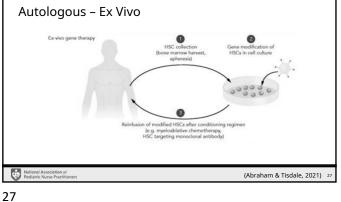

Alternative Donors

22

- Matched unrelated donor is associated with increased risk of GVHD and limited donor pool
- Umbilical cord is limited due to lower cell dose and not all institutions being cord blood institutions
- Haploidentical donors are more accessible and becoming more popular in patients with SCD
 - T-cell depletion using post-transplant cyclophosphamide has improved engraftment rates and reduced GVHD
- Increasingly being used to treat older SCD patients, <3,000 patients globally have undergone allogenic BMT

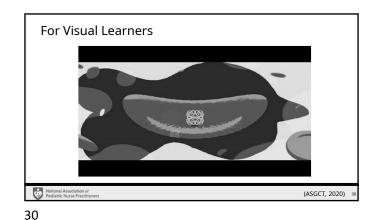
21


Gene Therapy


What's Next? The Future is Here

- SCD results from a single point mutation making gene therapy an attractive treatment option
- The Cure Sickle Cell Initiative was developed in 2018 and is a NHLBI-led collaborative effort that will accelerate the development of gene therapy
- Visit curesickle.org for more information

25

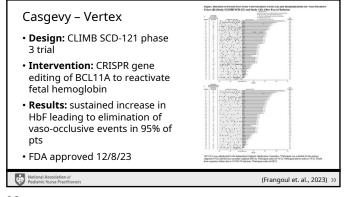

Mobilization for Stem Cell Collection

- Discontinuation of disease modifying therapies >60 days prior to mobilization
- Monthly red cell exchanges until transplant to keep HbS ≤30%
- GCSF is contraindicated in SCD so patients will receive plerixafor to mobilize CD34+ stem cells
- Will undergo 1 to 3 leukapheresis cycles to collect cell goal for
- A challenge is collection requires specialized expertise that not every center has

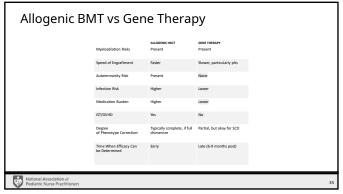
Conditioning Regimen & Stem Cell Infusion

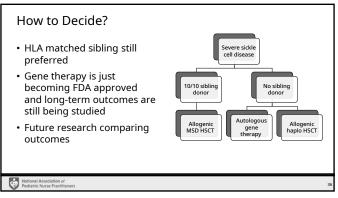
- Single agent use of busulfan it is myeloablative but not immunosuppressive
- Manufactured product will be infused on Day 0
- Since single agent use will take longer to nadir and count
- No risk of GVHD or graft rejection

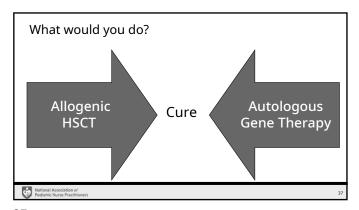
• Design: HGB-206 phase 1/2 • **Intervention:** Lentiviral gene addition resulting in antisickling HbAT87Q • Results: sustained production of HbAT87Q leading to reduced hemolysis and resolution of

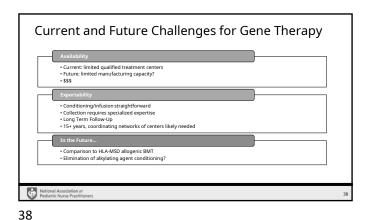

severe vaso-occlusive events

Lyfgenia - Bluebird Bio


• FDA approved 12/8/23


(Kanter et. al., 2022) 31 31





Case Study

- 27yo with SCD self-referred himself from Arkansas to CHCO when he heard we had an investigational gene therapy available
 - Did not have his 1st VOE until 4yo
 - $\bullet\,$ Had intermittent VOE growing up which were usually treated outpatient
 - Started hydroxyurea at 20yo
 - Over the past 2 years has had increasing frequency of VOE requiring hospital admissions (11x) and 6 ED visits requiring IV analgesia but not admission
 - Baseline: essential HTN and persistent proteinuria/CKD d/t underlying SCD $\,$
- Screening visit completed and consented to study
- Discontinued hydroxyurea and started on monthly exchange transfusions

National Association of Pediatric Nurse Practitioners 39

Case Study

40

- Mobilized w/ plerixafor and underwent 3 leukapheresis cycles to collect cell goal that was sent out for manufacturing
- Received an exchange transfusion prior to each collection cycle
- He continued to come to CO monthly for exchange transfusions and had to be admitted several times for VOE
- In February 2023 he was admitted to start his conditioning regimen with busulfan on day -7 through -4
- ullet Received his autologous gene edited stem cells on 2/28/23
- Transplant course complicated by mucositis, F/N, CINV, AKI but no SAEs
- Engrafted on day +24, central line removed and discharged on day +26
- A year post transplant he has had no VOE and reports he feels like a new man!

National Association of Pediatric Nurse Practitioners

- Mentorship
 - Dr. Verneris
 - Dr. Fabrizio
 - Dr. McKinney
 - Ali Keasler, RN
- BMT APP Team
- BMT MD Team
- Patients & Families of CHCO
- Our emotional support
 Jaxon, Billie & Zola

References

- Abraham, A. A., & Tisdale, J. F. (2021). Gene therapy for sickle cell disease: moving from the bench to the bedside. Blood, 138(11), 932-941. https://doi.org/10.1182/blood.2019003776
- ASGCT. (2020). Gene therapy and sickle cell disease [Video]. YouTube. http://www.youtube.com/watch?v=Ro18vRnk6JI
- Brandow, A. M., & Liem, R. I. (2022). Advances in the diagnosis and treatment of sickle cell disease. Journal of hematology & oncology, 15(1), 20. https://doi.org/10.1186/s13045-022-01237-z
- Bluebird Bio. (2023). Find a qualified treatment center. Lyfgenia. http://lyfgenia.com/find-a-qualified-treatment-center.
- Frangoul, H., Locatelli, F., Sharma, A., Bhatia, M., Mapara, M., Molinari, L., Wall, D., Liem, R.I., Telfer, P., Shah, A.J., Cavazzana, M.,
 Corbacioglu, S., Rondelli, D., Meisel R., Dedeken, L., Lobitz, S., Montalembert, M., Steinberg, M., Walters, M., ... Grupp, S. (2023).
 Exagamiglogene Autotemed for Severe Solkice Gib Disease. Bloot, 41(21), 1052.
- Kaltwasser, J. (2023). Sickle Cell Disease Cuts 20 Years From Life Expectancy, Study Finds. AJMC.
- Borhade MB, Kondamudi NP. Sickle Cell Crisis. [Updated 2022 Aug 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526064/
- Kane I, Kumar A, Atalla E, et al. Spienic Sequestration Crisis. [Updated 2023 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553164/

42

42

41

References

- Fitzhugh, C. D., Abraham, A. A., Tisdale, J. F., & Hsieh, M. M. (2014). Hematopoietic stem cell transplantation for patients with sickle cell disease: progress and future directions. *Hematology/oncology clinics of North America*, 28(6), 1171–1185. https://doi.org/10.1016/j.hoc.2014.08.014
- Kanter, J., & Falcon, C. (2021). Gene therapy for sickle cell disease: where we are now?. Hematology. American Society of Hematology. Education Program, 2021(1), 174–180. https://doi.org/10.1182/hematology.2021000250
- Kanter, J., Walters, M. C., Krishnamurti, L., Mapara, M. Y., Kwiatkowski, J. L., Rifkin-Zenenberg, S., Aygun, B., Kasow, K. A., Pierciey, F. J., Ir, Bonner, M., Miller, A., Zhang, X., Lynch, J., Kim, D., Ribell, J. A., Asmal, M., Goyal, S., Thompson, A. A., & Tisdale, J. F. (2022). Biologic and Clinical Efficacy of tenticlobin for Sickle Cell Disease. The New England journal of medicine, 386(7), 617–628. https://doi.org/10.1056/NEJMoa2117175
- Vertex. (2023). Find a Casgevy treatment center. Casgevy. http://casgevy.com/sickle-cell-disease/find-an-ATC
- Quinn CT. Sickle cell disease in childhood: from newborn screening through transition to adult medical care. Pediatr Clin North Am (2013) Dec;60(6):1363-81. doi: 10.1016/j.pcl.2013.09.006. PMID: 24237976; PMCID: PMC4262831.
- Y. Vinod, W. Gonsalves, K. Ariyarathna, P. Silberstein, Sickle Cell Anemia, Reference Module in Biomedical Sciences, Elsevier (2016). doi.org/10.1016/B978-0-12-801238-3-98819-6.

National Association of Pediatric Nurse Practitioner