

Learning Objectives

- 1. Understand the role of surgery for pediatric epilepsy patients
- 2. Define the criteria for considering epilepsy surgery
- 3. Identify the advantages of newer surgical options for epilepsy patients
- 4. Recognize the different postoperative outcomes for various types of epilepsy surgeries

National Association of Pediatric Nurse Practitioners 3

Epilepsy

Prevalence of 1 in 200 people

Incidence of pediatric epilepsy is 45 per 100,000 children per year

Table 2. Operational (practical) clinical definition of epilepsy

[phays 1. disease of the basic defined by any of the lifering conditions

1. Also tax to suppressed assocrate refer less between concept 2-th sport

2. One expressed defined assocrating on the last of the less between sonder so the general resourcesce risk (at least 60%) after two suppressed assocrace, coursel good the last of peace.

Medically Intractable Epilepsy

- Persistent seizures despite optimal medical management (2 or more AEDs)
- 20-30% of pediatric epilepsy cases
- Side effects from ongoing seizures and AEDs
 - Medical side effects
 - Damage to developing brain
 - · Halted progression of developmental milestones
 - Difficulties in social adaptation
 - · Lower quality of life

National Association of

Why consider surgery?

- After 2-4 AEDs, additional meds offer <5% chance of ending
- Even lower chance of ending seizures if there is a lesion
- Ongoing neurologic morbidity from ongoing seizures AND side effects of AEDs
- Goals of surgery
 - Remove the epileptic focus
 - · Reduce or eliminate seizures
 - Preserve healthy brain tissue & function

National Association of

6

5

2019 Cochrane Review

- Cochrane Library
- 182 studies, included 16,855 participants
- Mostly retrospective reviews
- $\bullet\,$ Of 2 RTCs that compared surgery to medications, surgery had better outcomes
- Of 16,756 surgical patients, 64% achieved a "good" outcome (= freedom from seizures)
- Prognostic factors for a better post-surgical outcome
 - Abnormal preop MRI
 - No use of intracranial monitoring
 - Complete surgical resection
 - Presence of mesial temporal sclerosis
 - Presence of a tumor
 - Concordance of preop MRI with EEG

Why consider surgery EARLY?

- Intractable seizures during early childhood
 - Increased risk for intellectual delay
- Risk of delay in all developmental milestones
- Poor seizure control in adolescence & adulthood
 - \bullet Lower rates of high school graduation, marriage, and employment
- \bullet Overall lifetime cost of seizure management & treatment
- Mortality risk

8

- 0.5% per year and accumulates over a lifetime
- Related to aspiration events, seizure-related trauma, status epilepticus, SUDEP

	A Neurological economicion					B Copine instigres						C linky						
10	1	-		-	-	""	-				7	"	-		-	_		
. *				-		*		-	-		4	-			Penti	BC / BOY	ij	
[.	-					-												
i.												-						
٠,						20						10						
			à		-	۰	-	-	-		7	d	-	-	-			
		Year of Missesp						Name of Salamongs					Years of Automorp					

Phase 2 monitoring

- Invasive monitoring to better characterize seizure origin
- Data is collected during seizures
- "Mapping" may be performed to identify areas to avoid during surgical resection and/or predict postop deficits
 - 1. Subdural grids/strips
 - 2. Stereoelectroencephalography (sEEG)

10

Grids & Strips

- Subdural grid & strip electrodes are placed intraoperatively
- Electrodes are placed directly on the brain
 - Grids of electrodes placed on the surface of the
 - Depth electrodes can be placed within the brain parenchyma

Stereoelectroencephalography (sEEG)

- Ages 2+
 - Consider tolerance of phase 2 mapping
 - Skull thickness not amenable to intra-op anchors used
- Planning with pre-op contrast-enhanced high-resolution MRI
 - Plan electrode trajectories
 - Optimize epileptogenic zones
 - Avoid eloquent brain tissue & vascular areas

Stereoelectroencephalography (sEEG)

- · Robot assisted lead placement
 - Allows for precision placement
 - Decreases operative time
- Operation
 - Patient placed in a frame
 - Face is "registered" using laser-based facial recognition from pre-op studies
 Robot creates twist drill holes

 - Guide bolts screwed into place to create the trajectories
 Electrodes are placed using a stylet into each trajectory

 - Electrodes are connected externally to electrocorticography recording setup

sEEG Risks

- Intraparenchymal hemorrhage
- Subdural hematoma
- Infection
- Failure to capture seizures during monitoring

14

13

Management during phase 2 monitoring

- AEDs weaned
- Strict bedrest
- 1:1 supervision at all times
 - Within arms reach
- Monitor until seizure activity
- sEEG leads removal
 - Sedation or general anesthesia
- Discharge & plan for next surgery

Surgical Options

Curative

1. Laser Ablation

2. Lesionectomy

3. Lobectomy 4. Hemispherectomy

Palliative

1. VNS

2. RNS

3. DBS

Laser interstitial thermal therapy (LITT)

- Uses thermal energy to target tissue to induce cell death
- MRI-guided
- Advantages
 - Can be used for foci in deep and/or eloquent regions
 - Less invasive
 - Shorter hospital stay (average 24 hours)
- Best for epilepsy caused by
 - Hypothalamic hamartoma
 - Low-grade glioma
 - Cortical dysplasia

LITT surgery

- Needle biopsy performed in OR
- Laser catheter placed
- Thermometry performed in MRI

18

17

LITT Risks

- Hematoma or injury caused by catheter placement
- Thermal ablation beyond boundaries of lesion
- Ongoing seizures related to insufficient resection

Lesionectomy

- Removal of a lesion/seizure focus
- Low-grade tumors, cortical dysplasia, vascular lesions
- Extent of resection predicts seizure freedom
- 72-92% success rates

20

Lobectomy

- Removal of an area of the brain
- Temporal lobectomy is the most common
 - · Highest risk is a decline in verbal memory
- · Using functional MRI
 - Helped to predict post-op deficits
 - Pre-operatively identified areas responsible for motor, language & memory
 - Helped to determine surgical approach & extent of resection
 - Neuropsychological testing needed to determine if patients could participate in fMRI, tailor tasks, and coach patients during fMRI

21

Lesionectomy/Lobectomy Risks

- Damage to eloquent brain tissue
- Deficits depend on the area that is resected
 - Temporal lobe important for language & memory
 - Hemispherectomy will cause hemiparesis & homonymous hemianopia
- Risk of incomplete resection
- Risk of ongoing seizures
- Younger patients are more likely to make more complete recoveries

22

Hemispherectomy

- Removal or disconnection of a cerebral hemisphere
 - For children with diffuse seizure onset
 - Common causes: perinatal ischemia, Sturge-Weber, hemimegalencephaly, Rasmussen encephalitis
- Functional hemispherectomy
 - Now gold standard
 - ullet 80% + rates of seizure freedom
 - Increased preservation of function

National Association of Pediatric Nurse Practitione

Hemispherectomy Risks

- Almost 50% of patients already have lateralized deficits preoperatively
- Brain has already started to re-wire
- Post-op deficits
 - Hemiparesis
 - Hemianopia
 - Hydrocephalus

National Association of Pediatric Nurse Practitions

24

VNS

- Generator implanted at left chest
- Leads thread up to the vagus nerve
- Vagus nerve is stimulated via electrical
- Designed to prevent seizures and respond to tachycardia to shorten a seizure
- Magnet will stimulate the VNS generator to stop a seizure in progress
- Indicated for age 4+

25

VNS Management

- Generators are turned on at 2 weeks postop
- Device is ramped up every 1-2 weeks to increase the impulse output
- Battery lasts 6 years on average
- Battery changes require repeat operation
- VNS Risks
 - Skin infection
 - Temporary bradycardia
 - Changes in voice quality or hoarseness
 - Increased coughing & drooling
- Outcomes vary: 50-90% reduction in seizure frequency

26

Responsive NeuroStimulation (RNS)

- FDA approved in 2013 for 18+ years
- Neurostimulator device is implanted in the skull
- 2 implantable leads, each with 4 contacts
 - Either surface or depth electrodes
- Battery life ~ 8 years
- Risks

 - Infection

RNS Management

- Only closed loop system
- RNS records ECoG AND delivers stimulation
- First month operates in "detection" only
- RNS is programmed with triggers and parameters for stimulation
- MRI "safety mode" during MRI

RNS Outcomes

- Efficacy improves over time
 - 44% median reduction in seizure frequency at 1 year
 - 53% median reduction at 2 years
 - 60-66% median reduction at 3-6 years
 - 75% median reduction at 9 years
- No cognitive adverse effects
- Improvements in quality of life
- Statically significant reductions in risk of SUDEP

Deep Brain Stimulation (DBS)

- Initially used for movement disorders in adults
- FDA approved for epilepsy patients 18+ years of age
- Pulse generator implanted in chest (or abdomen)
- Depth electrode implanted into the thalamus
 - Placement of electrode can vary
- Delivers electrical stimulation to modulate cortical excitability
- Trialed after a failed ablation and/or inadequate response from

29

30

DBS Management & Risks & Outcomes

- Pulse generator is programmed
- Risks
 - Infection
 - Skin erosion

• Electrode lead breakage

- 50-85% reduction in seizure frequency
- Statistically significant improvements in quality of life

Questions/Limitations

- Long-term consequences of placing electrodes into a developing
- No studies comparing VNS vs RNS vs DBS

32

Case Studies

34

Born at 37 weeks

MRI on day 1 of life due to prenatally diagnosed ventriculomegaly

L hemimegalencephaly

Seizures started at 14 days of life

Evaluated in multi-disciplinary Epilepsy clinic at 2 months of life

Already on 4 AEDs

NG-tube feeds

Admitted at 2.5 months of age

Video EEG

PET scan

33

NS Follow up

- 2023 (age 3)
 - · No seizures since surgery
 - R-sided hemiparesis (2/5 strength, no hand opening)
 - Walking in gait trainer
 - Single word vocalizations & signs
 - Comprehensive therapies
 - Developmental preschool 3 days/week
 - Off all AEDs
 - Rectal diastat PRN
- G-tube placed Jan 2024

CL

- 12 yo F with hx tuberous sclerosis & intractable epilepsy
 - Infantile spasms at 4 months (vigabactrin)
 - Focal seizures at 18 months (levetiracetam/lamotrigine)
 - SEGA in 2016 (everolimus)
 - AEDs caused "cognitive slowing"
- Video EEG Aug 2020
 - Diffuse onset of seizures with bifrontal generalized discharges

38

37

CL's surgeries

39

- Stereo EEG for phase 2 monitoring Nov 2020
 - Seizure focus in L anterior & R frontal tubers
 - Scheduled for laser ablation of both tumors
- R craniotomy for resection of R frontal tuber March 2021
 - L-sided facial weakness postop
 - · Seizure freedom only a few days
 - "smaller" seizures subsided but "bigger" seizures continued

CL surgeries cont'd

- Additional phase 2 monitoring with subdural grid electrodes June 2021
 - L frontal & R hemisphere
 - · Included mapping
- 1st stage R tuber resection June 2021
- 2nd stage R tuber resection June 2021
 - No postop deficits
 - Increase in seizures for 1st month, then
 - · Increased seizures at 6 months postop
- VNS placement Jan 2024

- 6 yo M with hx Rasmussen's encephalitis & intractable epilepsy
 - Seizures began at age 3
 - Developmentally on track
 - Plateau in some milestones around age 3-4
 - Increase in behavioral outbursts, aggression & impulsivity when started on AEDs
- L stereotactic biopsies w/ ROSA April 2021

SS Epilepsy surgery

- L craniotomy for functional hemispherectomy May 2021
- EVD placement (removed POD 4)
- PICU post-op
- Postoperatively

 - R hemiplegia
 Expressive aphasia
 Initial mutism, first words on POD 10
 - Required NG-tube feeds
 - Brief setback with rhinovirus (returned to ICU for respiratory support)
 - Prolonged WOB (related to neuromuscular weakness?)
 No seizures
- Disposition to Rehab on POD 19

42

SS Recovery

- 3 week admission to inpatient rehab
 - No seizures
 - Tapered off prednisolone
 - Advanced to regular solid diet with ½ nectar thick liquids NG-tube removed
 - Ongoing R-sided weakness

 - Ambulating up to 200 feet with assistance & R AFO
 Improvements in ADLs Ongoing expressive aphasia
- Saying single wordsFrustration related to deficits
- Plan for developmental preschool at discharge

SS Follow up

- Brief hospitalization June 2022
 - · Severe headaches when weaning off zonisamide
- No structural changes on imaging
- · Daily headaches ~1 year
- · No seizures, weaned off AEDs
- Hypertonia Started on baclofen & received botox
- End of 2023 (age 6)
 Running, riding a scooter, wears R AFO
- Running, rioning a scooter, wears R Ai
 L-handed, wears R hand splint
 Difficulties with reading and writing
 Speaks in full sentences
 Regular diet and toilet trained
 R visual field cut
 School-based therapies

44

References

- Ali I & Houck K. (2021). Neuromodulation in pediatric epilepsy. Neurologic Clinics. 39, 797-810
- Boop S, Barkley A, Emerson S, Prolo LM, Goldstein H, Ojemann JG, & Hauptman JS. (2022). Robot-assisted stereoelectroencephalography in young children: technical challenges and considerations. Child's Nervous System. 38, 263-267
- Goldstein HE et al. (2022). Precision medicine in pediatric temporal epilepsy surgery: optimization of outcomes through functional MRI memory tasks and tailored surgeries. Journal of Neurosurgery: Pediatrics. 30, 272-283
- Kuo C, Feroze AH, Poliachik SL, Hauptman JS, Novotny EJ, & Ojemann JG. (2019). Laser Ablation Therapy for Pediatric Patients with Intracranial Lesions in Eloquent Areas. World Neurosurgery. 121, e191-e199
- McGovern R et al. (2019). Robot-assisted stereoelectroencephalography in children. Journal of Neurosurgery: Pediatrics. 23, 288-296
- February 23, 200-200

 Shurtleff H4 et al. (2021). Pediatric hemispherectomy outcome: Adaptive functioning, intelligence, and memory.
 Epilepsy & Behavior. 124, 108298-108308
- West S et al. (2019). Surgery for epilepsy (review). Cochrane Database of Systematic Reviews. 6, 1-172
- Yan H et al. (2019). A systematic review of deep brain stimulation for the treatment of drug-resistant epilepsy in childhood. Journal of Neurosurgery: Pediatrics. 23, 274-284

Questions?

46