

Speaker Disclosure

- No financial disclosures
- Photo consent has been obtained for all children in this presentation

National Association of Pediatric Nurse Practitioner

2

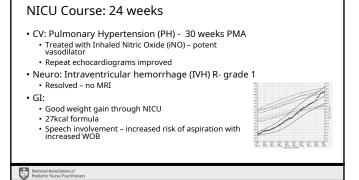
6 L (dr) (11/14)

1

Learning Objectives

- Understand the epidemiology of Chronic Lung Disease (CLD) of Prematurity/BPD
- Describe normal fetal lung development and physiology of "New BPD"
- Describe the short term and long-term pulmonary care of premature infants
- Identify the multisystem comorbidities associated with premature infants and BPD
- Create a care plan for the outpatient care of infants and children with BPD

National Association of Pediatric Nurse Practitioners


3

NICU Course - 24 weeks

- 24 3/7, AGA week premature female
- Birth weight: 677 grams
- Respiratory Course in NICU:
 - Invasive mechanical ventilation: PMA 34 weeks
 Non-Invasive ventilation support until PMA 38 weeks
 - Weaned to 0.5 L/min for home with steroid course
- Systemic steroid course
 - Prednisone → helped wean to home oxygen

National Association of Pediatric Nurse Practition

CLD/BPD

• The most common comorbidity associated with prematurity

• 30-40% of infants < 29 weeks gestation

• Up to 50,000 new cases of BPD each year ¹

• Incidence of BPD is increasing

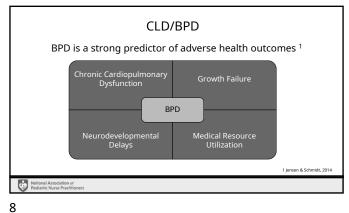
• Likely related to survival of extremely premature infants

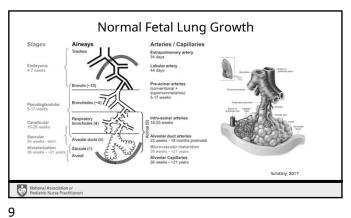
6

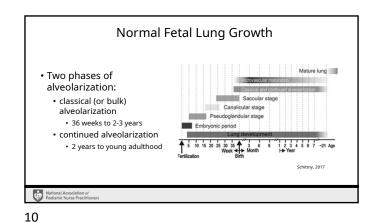
Prematurity

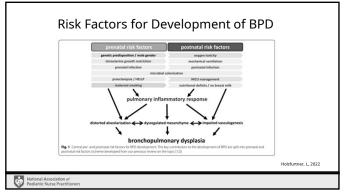
• Prematurity <37 weeks

• 6-14% of infants depending on the country

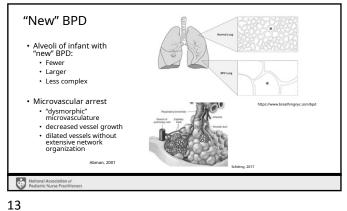

• US: 12.4/100 births - preterm

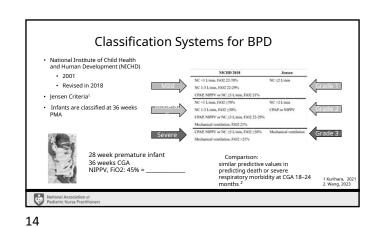

Moderate to Very Preterm Preterm <28 weeks

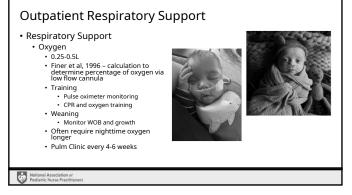

23-27 weeks

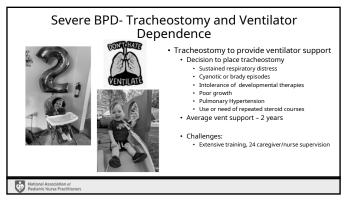

**BPD rates increase as gestational age and birth weight decrease * 2

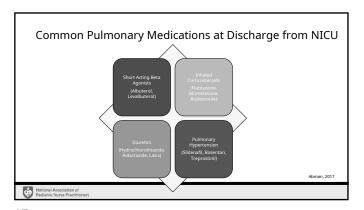
1. Ohuna. 2003
2. Thebaud. 2019

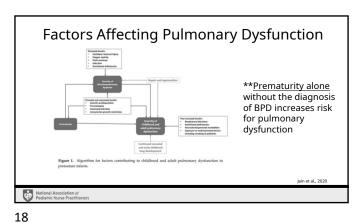


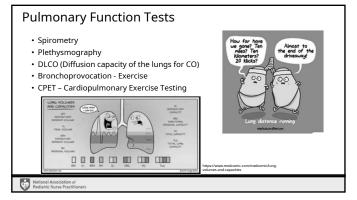


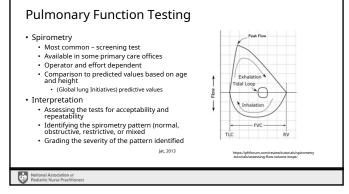

Changes in physiology of BPD

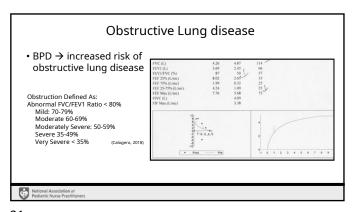

- Advances in OBGYN and NICU care have changed the physiology of BPD
 - Antenatal steroids (Betamethasone)
 - Surfactant
 - \bullet Changes in ventilator strategy, early extubation, improved nutrition
- Changes in Physiology
 - Old BPD
 - obstructive bronchiolitis and fibrosis of lung parenchyma
 - New BPD
 - abnormalities of central and small airways, impaired alveolar growth leading to


12

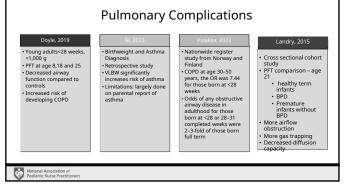


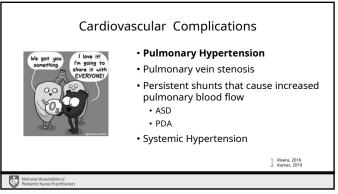


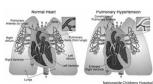












Pulmonary Hypertension

- Increased blood pressure in pulmonary arteries \rightarrow right heart failure
 - Abnormal vascular remodeling and vascular growth arrest
 - 25% -30% of infants with moderate to severe BPD develop PH
 - PH that persists beyond the first few months → mortality rates as high as 40-50%

Pulmonary Hypertension

- Evaluation
 - Echo indirect measures
 - Minimum 1 x per month while on respiratory support, Once discharged every 1-3 months
 - Biomarkers: BNP, ProBNP
 - Cardiac catherization
- Prevention
 - Limiting hypoxia and hyperoxia
 - Close attention to growth and nutrition. ** remember lung growth continues in the first 2 years of life
 - Early treatment of lung infections
 - Supporting the lungs with chronic mechanical ventilation

1. Rivera, 2016 2. Hansmann, 2021

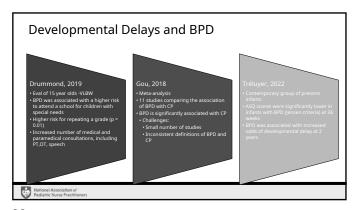
25

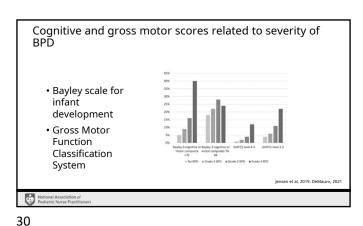
26

Pulmonary Hypertension Treatment

- Supplemental oxygen
 - Suspected PH: >93%
 - Proven PH >95%
- Inhaled nitric oxide (acute setting)
- Pharmacotherapy
 - Pulmonary vasodilators (off label)
 - PDE5 inhibitors (Sildenafil, Tadalafil)
 - Endothelin receptor antagonist (Bosentan, Ambrisentan)
 - Treprostinil (SQ continuous infusion)

Developmental Delays


- Infants with BPD have worse neurodevelopmental outcomes
 - Often < 28 weeks
 - Recurrent hypoxemia neonatal brain injury
 - Longer time in NICU
 - Longer exposure to mechanical ventilation
 - More exposure to sedatives
 - Less stimulation/tolerance of

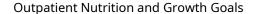


28

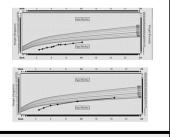
Outpatient Neurodevelopmental Care

- Follow up with Neurodevelopmental Specialist
 - **Early intervention**
 Automatic qualifier < 1,000 grams
- Hearing loss in 10-20 times higher in premature infants
 - exposure to ototoxic drugs in NICU (Lasix, gentamicin)
 - May require ABR
- Vision deficits
 - ROP
- ** Follow up with family to ensure they are receiving services **

National Association of Pediatric Nurse Practitioner


Nutrition and growth - BPD

- Supporting growth can be challenging
 - periods of hypermetabolic states
 - increased work of breathing and increased caloric expenditure
 - growth suppression from chronic stress and inflammation and chronic steroid or diuretic use
- IUGR and SGA
 - high-risk conditions for developing sBPD and may set the stage for persistent abnormal growth patterns in the postnatal period
- Slowest growth velocities → Highest risk for BPD


National Association of Pediatric Nurse Practitione

32

- · Goals for growth:
 - Weight for length 50th%
 - Adequate linear growth
 - Catch up growth
 - Continue fortified milk/formula until 10th% weight uncorrected growth chart
 - · Advance feeds (solids) according to adjusted age (not chronological age)

GI conditions affecting children with BPD

- Reflux
 - Peaks 4 months

 - Symptoms
 Feeding refusal
 - Vomiting
 Poor weight gain
 - Irritability

 - Treatment
 - · AR, smaller volume feeds, medications
- Constipation
 - Distended abdomen affect movement of the diaphragm and respiratory muscle compliance
 - Increased risk with higher calorie formula 27kcal/oz and 30kcal/oz
 Treatment: Lactulose <6 months, Miralax > 6 months, Glycerin PRN ¹

Consider referral to Pediatric GI

33 34

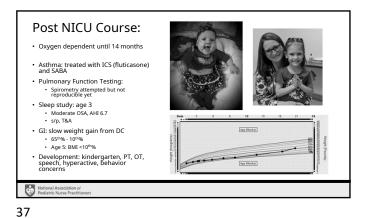
Feeding Difficulties

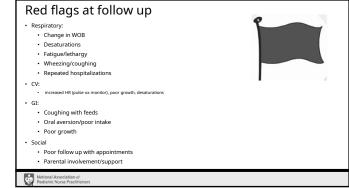
- Oral motor dysfunction/dysphagia and Aspiration
 - Neurologic impairments: IVH, Hydrocephalus, immaturity
 Increased work of breathing can affect coordination of suck, swallow/breathe

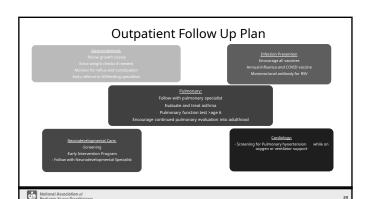
 - Evaluation
 Clinical swallow evaluation/ Video swallow study
 - Treatment

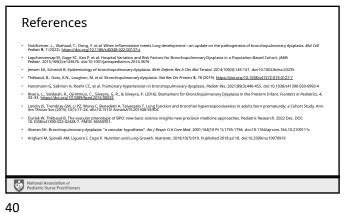
 - rearment

 Thickeners/slow flow nipples


 Feeding Support with GT


 Continued active therapy to enhance suck swallow coordination
- Recurrent microaspiration \rightarrow chronic respiratory symptoms
 - Coughing, wheezing, tachypnea, poor weight gain,
 Acute aspiration: LRTI often with need for increased respiratory support
- Oral Aversion
 - Refer to feeding specialist




36

Infection Prevention Most admissions in children with BPD → Lower Respiratory Tract Infections (LRTI) RSV, Rhinovirus, Human Metapneumovirus, RSV prophylaxis with monoclonal antibody ¹ Nirsevimab Avoiding exposure to sick contacts, large gatherings Limiting daycare in infants with severe BPD if able for the first year of life.

References

- Schittny, J.C. Development of the lung. Cell Tissue Res 367, 427–444 (2017). https://doi.org/10.1007/s00441-016-2545-0
- Ohuma EO, Moller AB, Bradley E, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. *Lancet*. 2023;402(10409):1261-1271. doi:10.1016/S0140-6736(23)00878-4
- Kurihara C, Zhang L, Mikhael M. Newer bronchopulmonary dysplasia definitions and prediction of health economics impacts in very preterm infants. *Pediatr Pulmonol.* 2021;56(2):409-417. doi:10.1002/ppul.25172
- Leif D Nelin, Steven H, Abman and Howard B Panitch. A physiology-based approach to the respiratory care of children with severe bronchopulmonary dysplasia. Neonatology Questions and Controversies: The Newborn Lung, Chapter 14, 249-278.
- Fee, E. L., Stock, S. J., & Kemp, M. W. (2023). Antenatal steroids: benefits, risks, and new insights. *Journal of Endocrinology*, 258(2), e220306. Retrieved Jan 15, 2024, from https://doi.org/10.1530/JOE-22-0306
- Cristea Al, Ren CL, Amin R, et al. Outpatient Respiratory Management of Infants, Children, and Adolescents with Post-Prematurity Respiratory Disease: An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2021;204(12):e115–e133. doi:10.1164/rccm.202110-22695T
- Kumar KR, Clark DA, Kim EM, et al. Association of Atrial Septal Defects and Bronchopulmonary Dysplasia in Premature Infants. *J Pediatr*. 2018;202:56-62.e2. doi:10.1016/j.jpeds.2018.07.024
- Vyas-Read S, Guglani L, Shankar P, Travers C, Kanaan U. Atrial Septal Defects Accelerate Pulmonary Hypertension Diagnoses in Premature Infants. Front Pediatr. 2018;6:342. Published 2018 Nov 23. doi:10.3389/fped.2018.00342
- Moschino L, Bonadies L, Baraldi E. Lung growth and pulmonary function after prematurity and bronchopulmonary dysplasia. *Pediatr Pulmonol*. 2021;56(11):3499-3508. doi:10.1002/ppul.25380

41

42

References

- Sriram S, Schreiber MD, Msall ME, Kuban KCK, Joseph RM, O' Shea TM, Allred EN, Leviton A; ELGAN Study Investigators. Cognitive Development and Q Preterm: Pediatrics. 2018 Jun;141(6):e20172719. doi: 10.1542/peds.2017-2719. Epub 2018 May 17. PMID: 20773654; PMCID: PMCG317639.
- Jensen EA, Dysart K, Gantz MG, et al. The diagnosis of broncho-pulmo Jain D, Feldman A, Sangam S. Predicting Long-Term Respiratory Outco https://doi.org/10.3390/children7120283
- Doyle LW, Irving L, Haikerwal A, Lee K, Ranganathan S, Cheong J. Airway of 2019;74(12):1147-1153. doi:10.1136/thoraxynl-2019-213757
- N, LI B, Zhang Q, et al. Relationship Between Birth Weight and Asthma Diagnosis: A Cross-Sectional Survey Study Based on the National Survey of Children's Health in the U.S. BMJ Open 2023;13(17):e07684. Published 2023 Dec 1. doi:10.1136/femjopen-2023-076884
- Ausz 14 (Jahrensen-Frainmeit Zub Ver. I. Dectrui. 1 Stermingen-Zub-Versen.

 Gegerro C, Frent C, Dembrade E, Messering-Anwey Obstruction Server Authma in Children. Frent Pedietr. 2018;6:199. Published 2018 Jun 26. doi:10.3380/fped.2018.00189

 jar KR. Spirometry in children. Frier Cere Regist J. 2013;22(2):221-229. doi:10.4104/pcj.2013.00042
- Pulakka, A., Risnes, K., Mesalik, J., Alenius, S., Heikkilä, K., Nilsen, S. M., Nissinen-Gilmore, P., Haaramo, P., Gissler, M., Opdahl, S., & Kajantie, E. (2023). Preterm birth and asthma an nationwide negister study from two Nordic countries. The European Respiratory Journal, 61(6), 2201763. https://doi.org/10.1189/1909/2003.01763-2022
- Levin, J. C., Annesi, C. A., Williams, D. N., Abman, S. H., McGrath-Morrow, S. A., Nelin, L. D., Shalis, C. A., & Hayden, L. P. (2023). Discharge Practices for Infants with Bronchopulmonary Dy National Experts. The Journal of Archerics, 253, 72-78-83. https://doi.org/10.1016/j.jceds.2022.09.012
- Chauma EO, Moller AB, Bradley E, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lencet. 2023;402(10409):1261-1271. doi:10.1016/S0140-6736/23000764
- Vandenplas, Y., Alarcon, P., Allist, P., De Greef, E., De Ronne, N., Hoffman, J., Van Winckel, M., & Hauser, B. (2015). Algorithms for managing infant constipation, colic, regurgitation and cow's milk allergy in formula-fed infants. Acta Postiotrica, 104(5), 449-457. https://doi.org/10.1111/apa.12962

References

- Tréluyer, L., Jarreau, P.-H., Marchand-Martin, L., Benhammou, V., Nuytten, A., Berguin, P., Marret, S., Pierrat, V., Ancel, P.-Y., & Torchin, H. (2022). Bronchopulmonary Dysplasia and Risk of Developmental Delay: An EPIPAGE-2 Cohort Study. Neonatology (Basel, Switzerland), 119(1), 124–128. https://doi.org/10.1199/000570451
- Gou X, Yang L, Pan L, Xiao D. Association between bronchopulmonary dysplasia and cerebral palsy in children: a meta-analysis. BMJ Open. 2018;8(9):e020735. Published 2018 Sep 19. doi:10.1136/bmjopen-2017-020735
- Sriram S, Schreiber MD, Msall ME, et al. Cognitive Development and Quality of Life Associated With BPD in 10-Year-Olds Born Preterm. Pediatrics. 2018;141(6):e20172719. doi:10.1542/peds.2017-2719
- DeMauro SB. Neurodevelopmental outcomes of infants with bronchopulmonary dysplasia. Pediatric Pulmonology. 2021; 3509–3517. https://doi-org.gate.lib.buffalo.edu/10.1002/ppul.25381
- Singer L, Yamashita T, Lilien L, Collin M, Baley J. A longitudinal study of developmental outcome of infants with bronchopulmonary dysplasia and very low birth weight. Pediatrics. 1997;100(6):987-993. doi:10.1542/peds.100.6.987
- Drummond D, Hadchouel A, Torchin H, Rozé J-C, Arnaud C, Bellino A, et al. (2019) Educational and health outcomes associated with bronchopulmonary dysplasia in 15-year-olds born preterm. PLoS ONE 14(9): e0222286. https://doi.org/10.1371/journal.pone.0222286
- Griffiths, V., Blinder, H., Hayawi, L., Barrowman, N., Luu, T. M., Moraes, T. J., Parraga, G., Santyr, G., Thébaud, B., Nuyt, A.-M., & Katz, S. L. (2023). Sleep-disordered breathing symptoms and their association with sroutural and functional pulmonary danages in children born extremely pretern. European Journal of Pediatrics, 182(1), 155–163. https://doi.org/10.1007/s00451-02-04651-0
- Abman SH, Collaco JM, Shepherd EG, et al. Interdisciplinary Care of Children with Severe Bronchopulmonary Dysplasia. J Pediatr. 2017;181:12-28e1. doi:10.1016/j.peds.2016.10.082
- Finer, N. N., Bates, R., & Tomat, P. (1996). Low flow oxygen delivery via nasal cannula to neonates. Pediatric Pulmonology, 21(1), 48–51. https://doi.org/10.1002/(SICI)1099-0496[199601]21:1