Infectious complications in the pediatric oncology patient

Stacy Wolf, MS, RN, CPNP-AC, CPON
Stanford Children’s Health at California Pacific Medical Center
Pediatric Hematology/Oncology Nurse Practitioner
17 March 2017

Disclosures

- No financial disclosures
- Off-label use of medications will be discussed

Learning Objectives

- Review risk factors in the pediatric oncology patient for development of infectious complications
- Identify important infectious pathogens in the pediatric oncology patient
- Discuss a systematic approach for evaluating and managing common infections for the Advanced Practice Provider (APP)
- Describe risk-stratification approaches in addressing fevers in the pediatric oncology patient
- Discuss the role of preventative measures and antibiotic stewardship in this vulnerable patient population

Overview of Childhood Cancer

- In 2014: 15,780 cases of childhood cancer (0-19 years)
- Types of childhood cancer:
 - Hematologic malignancies
 - Leukemia (ALL, AML), Lymphoma
 - Solid tumors
 - CNS tumors, neuroblastoma, osteosarcoma, Ewing’s, Wilm’s, GCT, rhabdomyosarcoma, retinoblastoma
- 5-year survival rate >80%

Source: American Cancer Society, Cancer Facts and Figures (2016)
Innate Immunity

- Detection of microorganisms & first-line of defense
- Does not provide long-lasting immunity
- Regulation of inflammation
- Phagocytosis (neutrophils, monocytes, macrophages)
- Severe neutropenia (ANC) <500 cells/mm³
 - Risk of infection increases with decreasing ANC

Adaptive Immunity

- Antigen specificity (T-cells and B-cells)
- Production of antibodies (B-cells)
- Role of T-cells:
 - Kill virus-infected cells
 - Signal B-cell antibody synthesis & memory B-cell formation
 - Activate macrophages
- Development of immunological memory

Lymphatic system

- Spleen – major lymphopoietic organ
- Contains ~25% of total lymphoid mass of body
- Major function: remove particulates from blood stream (opsonized bacteria, antibody-coated cells)
- Important in infections with encapsulated organisms
- Functional asplenia (RT)

Multimodal therapy

- Chemotherapy
- Surgery
- Corticosteroids
- Radiation therapy (field, dose)
- Immunotherapy (monoclonal antibodies, interferons, interleukins, CAR-T cell therapy, oncolytic virus therapy, cancer vaccines)
- Hematopoietic stem cell transplant (HSCT)

Other risk factors

- Age (infants <1 year)
- Comorbid conditions (Down Syndrome)
- Intensity & length of therapy
 - Induction therapy (ALL)
 - AML therapy
 - Relapsed disease
- Presence of foreign bodies (CVLs, G-tubes, VP shunts, Ommaya reservoirs)
- Immunization status

Other risk factors

- Mucosal breakdown
- Skin breakdown (perianal)
- Poor nutrition
- Prolonged hospitalizations
- Antibiotic therapy
- Gastric acid suppressants
Infectious etiologies

Bacterial Viral Fungal

• Overall infection-related mortality rate 0.5-6.6% in pediatric fever and neutropenia

Bacterial infections

• Concern for gram negative sepsis
• Rapid progression if not identified early:
 Bacteremia → sepsis → septic shock

All neutropenic patients who are febrile, or any patient who is toxic-appearing, are considered bacteremic until proven otherwise

Risk factors

• Intensity of therapy (AML, ALL Induction)
• Neutropenia (duration, intensity)
• Mucositis
• Down Syndrome (DS)
• Invasive devices
• Antibiotic therapy

• Most important reduction in risk for significant bacterial infection is recovery of neutrophil count

Sources of bacterial infection

• Most commonly from endogenous flora:
 – Skin flora (CVL)
 – GI flora (mucosal breakdown)
• Nosocomial
• Community-acquired

Bacterial pathogens

• Gram-positive organisms:
 – Staphylococcus spp.* (S.epidermidis, S.aureus)
 – Streptococcus spp.* (alpha-hemolytic)
 – Enterococcus spp.* (E.faecium, E.faecalis)
 – Corynebacterium spp.* (C.jeikeium)
 – Listeria monocytogenes
 – Bacillus spp. (B.cereus, B. circulans, B.licheniformis)
 – Clostridium spp. (C.dificile, C.septicum. C.tertium)

Bacterial pathogens

• Gram-negative organisms:
 – Enterobacteriaceae (Escherichia coli*, Klebsiella spp.*, Enterobacter spp., Serratia spp.)
 – Pseudomonas aeruginosa*
 – Stenotrophomonas maltophilia
 – Anaerobes (Bacteroides spp., Clostridium spp., Prevotella spp.)
Bacteremia

- Transition from predominantly gram-negative organisms to gram-positive organisms since 1970s
- Contributing factors:
 - Increased use of indwelling catheters
 - Widespread use of empiric antibiotics
 - More intensive chemotherapy regimens († mucositis)
- Higher mortality rate with gram-negative bacteremia

Presentation

- Fever may be only presenting symptom, especially in neutropenic patient
- Other possible signs/symptoms:
 - Shaking chills
 - Altered mental status
 - Abnormal VS (†HR, ‡BP, †RR)
 - Poor peripheral perfusion
- Risk for rapid decompensation without intervention

Diagnosis

- Blood cultures from all catheter sites +/- peripheral cultures
 - Important to obtain aerobic & anaerobic cultures from each site with sufficient volume
- Other cultures obtained based on presenting symptoms (urine, stool, CSF, sputum, wound)

Blood culture volume

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Total volume (1st set) (Divide into aerobic & anaerobic bottles)</th>
<th>Total volume (2nd set) (Divide into aerobic & anaerobic bottles)</th>
<th>Total mLs (approx. % of total blood volume)*</th>
</tr>
</thead>
<tbody>
<tr>
<td><9 kg</td>
<td>1 mL (0.5 mL/bottle)</td>
<td>1 mL (0.5 mL/bottle)</td>
<td>2 mL</td>
</tr>
<tr>
<td>9-14 kg</td>
<td>3 mL (1.5 mL/bottle)</td>
<td>3 mL (1.5 mL/bottle)</td>
<td>6-10 mL</td>
</tr>
<tr>
<td>15-27 kg</td>
<td>5 mL (2.5 mL/bottle)</td>
<td>5 mL (2.5 mL/bottle)</td>
<td>10-20 mL</td>
</tr>
<tr>
<td>28-41 kg</td>
<td>10 mL (5 mL/bottle)</td>
<td>10 mL (5 mL/bottle)</td>
<td>20-30 mL</td>
</tr>
<tr>
<td>>42 kg</td>
<td>20 mL (10 mL/bottle)</td>
<td>20 mL (10 mL/bottle)</td>
<td>>40 mL</td>
</tr>
</tbody>
</table>

*% of the total blood volume is the maximum blood volume that can be drawn from a patient for each blood culture draw

Adapted from LPCH Blood Culture Procedure

Management

- Blood cultures first
- Prompt initiation of broad-spectrum IV antibiotics is the most important therapeutic intervention to minimize complications (within 30-60 minutes)
- Appropriate antibiotic therapy modification based on identification and sensitivity of causative organism
- Minimum treatment of 14 days after first negative blood culture; may be longer depending on organism

Antibiotic therapy

- Importance of early administration of IV antibiotics
- Broad-spectrum coverage (including Pseudomonas)
- Combination therapy vs. monotherapy
- Antibiotic selection based on institutional preference and local resistance patterns
- Consider I.D. consult
Antibiotic combination therapy

- Cephalosporin (Ceftazidime) + aminoglycoside
- ß-lactam (Piperacillin-Tazobactam) + aminoglycoside

Benefits:
- Provided expanded anti-bacterial spectrum
- Enhanced potential synergistic interaction
- Prevent emergence of resistance

Disadvantages:
- Potential for increased toxicity

Combination antibiotic therapy

- Considerations for use:
 - Patient instability
 - Concern for resistant pathogens (*Pseudomonas, Acinetobacter, Citrobacter, Enterobacter, Klebsiella spp.)*
 - Need for synergism for specific pathogens (*Enterococcus, Mycobacterium spp., MRSA)*
 - Certain infections (endocarditis, cryptococcal meningitis)

Antibiotic monotherapy

- Found to be non-inferior to combination therapy
- Newer generation 4th generation cephalosporins
 - Cefepime
- Extended-spectrum ß-lactam Penicillin
 - Piperacillin-Tazobactam
- Carbapenems
 - Meropenem
 - Imipenem-Cilastatin
 - Ceftriaxone

Additional antibiotic coverage

- Consider adding Vancomycin in patients:
 - Presenting with hypotension, cardiopulmonary deterioration
 - Receiving high-dose ARAC (risk of alpha hemolytic strep)
 - Severe mucositis
 - Skin/soft tissue infection
 - Pneumonia
 - Clinical suspicion of CVL infection
 - History of MRSA

Addition antibiotic coverage

- Consider adding Metronidazole in patients:
 - Requiring better anaerobic coverage
 - Abdominal pain
 - Clinical suspicion of typhilitis

Severe, resistant infections

- VRE, MRSA, other gram-positive resistant organisms
 - Linezolid
 - Daptomycin
 - Quinupristin/Dalfopristin
- Usually require ID consult to use
- Not first-line therapies
- Use judiciously
CVL Infection

• Consider removal of CVL:
 – Recurrent infection
 – No response of antibiotics after 2-3 days
 – Evidence of tunnel or port-pocket infection
 – Septic emboli
 – Hypotension associated with catheter use
 – Non-patent catheter
 – Bacteremia from Bacillus spp., Pseudomonas, Stenotrophomonas maltophilia, C. jeikeium, VRE, Acinetobacter

Typhlitis (neutropenic colitis)

• Infectious and inflammatory process in the cecum
• May also involve ascending colon and ileum
• Severe and life-threatening
• Main pathologic findings:
 – Hemorrhagic necrosis
 – Ulcerations with bacterial colonization
 – Transmural inflammation
 – Thickening of bowel wall

Risk factors

• Prolonged neutropenia
• Hematologic malignancies (Burkitt’s lymphoma, AML)
• High-dose Cytarabine (ARAC) or Methotrexate (MTX)
• Mortality rates up to 20% have been reported

Presentation

• Non-specific s/s may mimic other underlying conditions
 – Fever
 – Abdominal pain (RLQ, diffuse)
 – Diarrhea
 – Abdominal distention
 – Nausea/vomiting
• High index of suspicion

Diagnosis

• Abdominal xray – low diagnostic value
• Ultrasound
• CT – higher accuracy
 – Demonstrate bowel wall thickening
 – ≥10 mm – highest risk
• Lab findings – non-specific
Treatment

- Conservative management:
 - Broad-spectrum antibiotics (gram-positive, gram-negative, & anaerobic coverage)
 - Bowel rest
 - Abdominal decompression
 - Aggressive fluid resuscitation
 - Correction of electrolyte abnormalities

- Surgical management reserved for high-risk or complicated/severe cases:
 - Evidence of bowel perforation
 - Uncontrolled bleeding after correction of cytopenia and clotting abnormalities
 - Development of abscess, appendicitis
 - Clinical deterioration
 - Perforated or necrotic appendicitis
 - Primary anastomosis not recommended

Clostridium difficile infections

- C. diff – anaerobic, gram-positive, spore-forming, toxin-producing bacillus
- Spores found in environment – metabolically dormant
- Resistant to heat, acid, antibiotics, and most disinfectants
- Can persist on hospital surfaces for months
- Increasing incidence of infection

Risk Factors

- Antibiotic exposure (esp. PCNs, cephalosporins, Cefepime, clindamycin, fluoroquinolones)
- Immunosuppression
- Use of PPIs
- Impaired intestinal mucosa
- Increased exposure to healthcare settings
- Gastrostomy/jejunostomy tubes

C. difficile

- Presentation:
 - Diarrhea with mucus or blood
 - Abdominal cramps/pain
 - Fever
- Complications:
 - Toxic megacolon
 - Intestinal perforation
 - Systemic inflammatory response syndrome
 - Death

Diagnosis

- Stool testing:
 - Glutamate dehydrogenase (GDH) antigen
 - Enzyme immunoassay (EIA)
 - PCR – Nucleic acid amplification tests (NANTs)
 - Two-step algorithms (if + GDH → PCR)
 - Cell culture cytotoxicity assay (not commonly used)
- Important to run test promptly after collection
C.Diff treatment

- Vancomycin (PO) preferred for severe or complicated infection
 - Usual duration 10-14 days (tailored to clinical response)
 - Recurrent infections can be treated with longer courses of Vancomycin (up to 7 weeks with taper)
- Metronidazole for mild/moderate infection
 - PO treatment for 10-14 days
 - IV Metronidazole in unable to tolerate POs

C.Diff prevention

- Strict infection control
 - Isolation (contact plus+ precautions) as soon as symptoms present
 - Good hand hygiene (soap & water only)
 - Environmental cleaning (bleach solution)
- Antibiotic stewardship

Viral infections

- Varicella zoster (VZV)
- Herpes Simplex (HSV)
- Influenza A & B
- Respiratory Syncytial Virus (RSV)
- Parainfluenza
- Adenovirus
- Human metapneumovirus
- Cytomegalovirus (CMV)
- Epstein-Barr Virus (EBV)
- Human Herpes Virus-6 (HHV6)

Varicella zoster virus (VZV)

- Human herpesvirus 3
- Varicella (disseminated) and herpes zoster (localized) infections
 - Zoster infections can disseminate in immunocompromised patients
- Highly contagious
- Contact with upper respiratory tract mucosa or conjunctiva
- Person-to-person transmission by airborne route from direct contact with VZV lesions

Varicella zoster virus (VZV)

- Patients are contagious 1-2 days prior to onset of rash, until all lesions have crusted over
- Usual incubation period 14-16 days (range 10-21 days)
- Risk factors:
 - Immunosuppressive therapy
 - Corticosteroids
- Immunocompromised patients are at increased risk of severe disease
Zoster infection

Diagnosis

- VZV PCR* (vesicle swab/scraping, crusted lesion, tissue biopsy, CSF)
- VZV DFA (vesicle, lesion base)
- Viral culture (vesicular fluid, CSF, tissue biopsy)

- Not useful:
 - VZV IgG (serum)
 - VZV IgM (serum)

Treatment

- Maximum benefit if started within 24 hours of rash onset
- Anti-viral agents:
 - IV Acyclovir
 - PO Valacyclovir (may consider in low-risk patients)
- VariZig
 - Administered ASAP after exposure
 - Ideally given within 96 hours
 - Can be given up to 10 days after exposure
- IVIG (if VariZIG unavailable)

Isolation

- Airborne and contact precautions (localized or disseminated disease) in immunocompromised patients
- For duration of illness
- Important to identify potentially exposed patients

Varicella complications

- Secondary infection of skin lesions (strep, staph)
- Immunocompromised patients at risk for:
 - Cutaneous dissemination
 - Visceral organ involvement
 - Pneumonia
 - Hepatitis
 - Encephalitis
- Primary VZV – ~10% mortality rate in untreated children with leukemia

Fungal infections
Types of fungus

- Yeast ➔ single cell, reproduce by budding
- Mold ➔ characterized by development of hyphae

Candida

- Most common causative species – *Candida albicans*
- Found on skin, mouth, intestinal tract & vagina
- Person-to-person transmission is rare
- Incubation period – unknown

Risk factors

- Myelosuppresive chemotherapy
- Prolonged neutropenia (AML therapy)
- Corticosteroids
- TPN/IL
- Treatment with broad-spectrum antibiotics
- Long-term CVLs

Candida infections

- Oral/Esophageal/Laryngeal candidiasis
- Vaginal candidiasis
- Candidemia*
- Disseminated/Invasive candidiasis*

Diagnosis

- Culture from sterile body site (blood, CSF, BM) or tissue biopsy
- Negative culture does not exclude infection in immunocompromised host

Treatment

- Echinocandin
 – Micafungin (Disseminated or esophageal candidiasis)
 – Caspofungin (Candidemia)
- Liposomal Amphotericin B
- Fluconazole
- Treat for minimum of 14 days
Invasive Aspergillosis

- Mostly commonly caused by *Aspergillus fumigatus*, then *Aspergillus flavus*
- Route of transmission – inhalation of spores
- Common sources:
 - Soil
 - Dust (e.g., construction or demolition)
 - Plants, vegetables
 - Water supplies (e.g., shower heads)

Risk Factors

- New onset AML
- Relapse of hematologic malignancy
- Prolonged neutropenia
- T-lymph suppressive therapy (corticosteroids)

Diagnosis

- Not usually isolated from blood
- Lung, sinus, skin biopsy usually needed
- Galactomannan testing
- Imaging:
 - Chest xray
 - Chest CT

Galactomannan

- Molecule found in *Aspergillus* cell wall
- Serum or bronchoalveolar lavage (BAL)
- False positives:
 - food sources
 - cross-reactivity with fungal-derived antibiotics
- Negative test does NOT exclude diagnosis
- Use in conjunction with clinical & radiologic findings

Voriconazole

- Treatment of choice for *Aspergillus*
- *Minimum* treatment – 12 weeks
- Close monitoring of serum trough concentrations
- High interpatient variability in metabolism
- Need to individualize dosing
- Significant drug-to-drug interactions
Alternative treatments

- Severe disease in high-risk patients
 - May consider combination therapy
 - Voriconazole + echinocandin (Caspofungin, Micafungin)
- Liposomal Amphotericin B
 - *Aspergillus terreus* fully resistant
 - Not available orally
- Surgical debridement or excision of localized lesion (if possible)

Treatment of refractory aspergillosis

- Azoles:
 - Posaconazole
 - Erratic absorption
 - Patient must be tolerating PO or enteral feeds
 - Itraconazole
- Echinocandins:
 - Caspofungin
 - Micafungin
- Limited data on combination therapy:
 - Broad-spectrum azole or liposomal ampho + echinocandin

Environmental measures

- Barriers between construction sites and patient care areas
- Laminar flow rooms, HEPA filters
- Routine cleaning of air-handling systems
- Repair of faulty air flow
- Replacement of contaminated air filters
- Minimize environmental exposure

Approaches to management of the febrile oncology patient

- All neutropenic patients who are febrile, or any patient who is toxic-appearing, are considered bacteremic until proven otherwise
- The afebrile, neutropenic patient presenting with:
 - localizing pain (especially abdominal pain)
 - hemodynamic instability
 - altered mental status
 - new s/s suggesting infection

 should be evaluated and treated as high-risk patient

Important caveats

- Neutropenic patients may not display the same inflammatory responses to infection as non-neutropenic patients
- Fever may be the only presenting sign of serious infection in the immunocompromised patient
- Not all febrile patients will have a documented infection
- Not all patients with a serious infection will present with fever
Management
- Detailed history and comprehensive review of systems
- Thorough physical examination
- Understanding recent therapies
- Labs to obtain
- Neutropenic or not?
- Importance of prompt initiation of therapy, if indicated

History
- Type of malignancy
- Treatment regimen/most recent therapy
- Fever (t.max, duration, associated chills/shaking/ribors)
- Potential exposures/sick contacts
- Current medications
- History of previous febrile infections

Review of Systems
- Headache
- Myalgias
- Orthostatic symptoms
- Cough, rhinorrhea, SOB
- Sore throat, ear pain
- Chest pain
- Abdominal pain
- Vomiting, diarrhea
- PO intake
- Pain with urination
- Skin lesions, rashes

Physical Exam
- Vital signs (Temp, BP, HR, RR, SpO2, weight)
- Thorough head-to-toe exam
- Particular attention to:
 - Oral mucosa
 - Abdomen
 - Perineum
 - CVL site
 - Surgical sites
 - Pain

Labs
- CBC with differential
- Blood cultures from all catheter sites +/- peripheral cultures
- Chemistry panel (lytes, Cr, LFTs)
- Urine culture +/- UA (non-cath)
- *Lactate*

Additional studies
- Based on symptoms:
 - Respiratory → CXR, respiratory virus panel, CT scan
 - GI → Stool cultures, KUB, US, CT scan, amylase/lipase
 - CNS → LP (CSF studies and culture), CT scan
 - Skin → culture (bacterial, viral)
 - Oral → throat cultures; viral or fungal cultures
Treatment

- **Prompt** initiation of broad-spectrum antibiotic therapy (30-60 minutes)
- Close inpatient monitoring (minimum 48 hours)
- Intensive supportive care
 - Aggressive IV fluids
 - Monitor s/s septic shock
 - Monitor mental status changes
 - Vasopressor support

Ongoing management

- Close monitoring for changes in clinical status
 - Monitor closely after initial dose of IV antibiotics
- Aggressive IV fluid support
- Hemodynamic support, if needed
- +/- daily blood cultures, if febrile
- Repeat blood cultures if change in clinical status
- Follow chemistries, LFTs, BUN/Cr
- Monitor drug levels

Ongoing management

- Consider therapy modifications:
 - Changes in clinical status
 - Broaden coverage (aminoglycoside, Vanco, Metronidazole)
 - Persistent fevers first 3-5 days
 - +/- Broaden coverage based on clinical status
 - Consider adding anti-fungal coverage (by day 5)
 - Pathogen identified
 - Narrow coverage based on sensitivity, if possible

Duration of treatment

- Broad-spectrum IV antibiotic coverage for minimum of 48 hours
- Criteria for discharge:
 - Negative cultures after 48 hours
 - Afebrile >24 hours
 - ANC > 500 (or ANC >200 for 2+ days and rising)
 - Clinically stable
- If positive cultures, length of antimicrobial treatment will be based on pathogen identified & response to therapy

Home antibiotics?

- No uniform treatment recommendations
- Requires close outpatient follow-up
- Considerations:
 - Frequency of therapy
 - Family dynamics
 - Availability of home support services
 - Outpatient support

Fever in non-neutropenic patient

- Work-up same in all febrile oncology patient
 - Detailed history and review of systems
 - Thorough physical examination
 - Labs (CBCd, CMP, blood culture, urine culture +/- additional studies, if indicated)
- Antibiotic coverage
 - Ceftriaxone vs. no abx?
- If stable, close outpatient follow-up
Consequences of aggressive management of febrile neutropenic patients

- Emergence of anti-microbial resistance (MRSA, VRE, ESBL, CRE)
- In-hospital complications (e.g., catheter dysfunction, nosocomial infections)
- Disruption of quality of family life
- Increased medical costs

Risk stratification

- Not all neutropenic children with fever are alike
- ~10-30% of F/N patients have documented bacteremia
- Is it possible to differentiate high-risk vs. low-risk neutropenic patients?

Pediatric risk-stratification

- No consensus on criteria has been established to date
- Possible factors associated with risk of severe infection:
 - High risk of prolonged neutropenia (>7-10 days)
 - Underlying malignancy (AML, relapsed disease, BM involvement, multiple malignancies)
 - Comorbidities (hypotension, shaking chills, FNA on XR, evident bacterial or fungal infection, severe mucositis, requiring ICU care)
 - Treatment with HD ARAC
 - Age <1 year
 - CRP >90 mg/L
 - Platelet count <50k

PO antibiotic step-down therapy

- No standardized guidelines
- May be considered for selected low-risk, stable patients
- Amoxicillin-Clavulanate + fluoroquinolone
- Considerations:
 - Family reliability
 - Distance to medical center
 - Close follow-up available

Role of Prevention

- Meticulous hand hygiene
- CLABSI initiatives
- Neutropenic precautions
- Avoid known sick contacts
- Full immunization of close contacts
- Prompt notification of infectious disease exposure (esp. VZV)
- Good oral hygiene

Role of anti-microbial prophylaxis

- Select high-risk patients (e.g., AML, infant leukemia) with periods of profound & prolonged neutropenia
- Antibiotic therapy
 - Fluoroquinolones
 - Levofloxacin
 - Ciprofloxacin
- Antifungal therapy
 - Fluconazole (Candida)
 - Caspofungin (Candida & Aspergillus)
 - Posaconazole (Candida & Aspergillus)
- Pneumocystis carinii/jiroveci prophylaxis
 - Sulfamethoxazole-TMP, Pentamidine, Dapsone, Atovaquone
Case Study

- 17 yo female with Ph+ pre-B ALL calls at @ 2030 with fever to 102.1°F (38.9°C) & shaking chills
- s/p platelet transfusion earlier same day
- s/p chemotherapy 8 days prior (Etoposide & Cyclophosphamide x5 days)
- On daily Dasatinib
- Started GCSF on Day 6

History

- Diagnosed ~9 months prior, treated as per COG AALLo622
- Therapy complications to date:
 - h/o prolonged QTc 2o therapy (Dasatinib & Doxorubicin)
 - h/o renal toxicity 2o high-dose Methotrexate therapy
- Infectious complications to date:
 - h/o Klebsiella sepsis x2
 - h/o Coag-negative staph bacteremia x2
 - h/o Enterococcus UTI x2
 - h/o C.diff colitis x1

Presentation

- Arrives ED ~2100
- ROS:
 - Fever with chills
 - Mild headache
 - Nausea with 1 episode NBNB emesis
 - Diarrhea
 - “Achy”
- No recent illnesses, no sick contacts

Presentation

- Admit VS:
 - BP: 115/75, HR: 152, RR: 20, T: 102°F, O2 sat: 100%
- Exam:
 - Neuro: A&O x3, slightly confused, word searching, speech slurred
 - CV: tachycardic, flow murmur, 1 sec. central cap refill, cool extremities
 - No focal findings concerning for infection

Labs

- Labs: CBCd, CMP, blood culture x2
- CBCd (ANC ~0)

 | <0.1 | 10.2 | 28.0 | 36k |

Labs

- CMP normal except:
 - Na 134 (L)
 - BUN 20 (H)
 - Cr 0.93 (H)
 - T.Bili 1.4 (H)
 - AST 90 (H)
 - ALT 190 (H)
 - Anion gap 13 (H)
- Blood cultures pending
Treatment

- IV Cefepime @ 2130, IV Tobra ordered
- NS bolus (20 mL/kg) IV
- Tylenol
- Transferred to ward

Hospital course

- 2200: BP: 93/39, HR 164, T: 101.7
- 2300: BP: 94/39, HR 160
- Now confused, dizzy, agitated with decreasing BP to 65/35
- Transferred to PICU
 - Multiple NS boluses with minimal improvement in BP
 - Started on Dopamine gtt @ 5 mcg/kg/min
 - Increased to 7 mcg/kg/min overnight
 - Added IV Vancomycin

Hospital course

- Additional studies:
 - Head CT (negative)
 - Coag significant for mildly elevated PT, PTT, & INR with D.Dimer 4.17 (normal <0.5)
 - Concern for DIC
 - Venous B.G. with pH 7.31 (L), HCO3 15.2 (L), Lactate 4.0 (H)
 - Concern for metabolic acidosis
 - Received IV Sodium bicarbonate
 - Peripheral IV placed

Hospital course Day #2

- By morning, more lucid & alert with appropriate behavior
- Improving VS, Dopamine weaned off by 1600
- Received PRBC and platelet transfusion
- Creatinine increasing (max. 1.33)
- Dopamine restarted at 1830 (BP 87/43)
- Blood cultures positive for gram-negative rods

Hospital course Day #3

- Defeveresced, Dopamine weaned off by 1430
- Lactate normalized – 0.87
- Blood cultures ID – *Klebsiella pneumoniae*
- Vancomycin stopped, continued Cefepime & Tobramycin

Continued hospital course

- Repeat blood cultures Days 2 & 3 – negative
- Day 6 – Hickman catheter removed
- Day 7 – ANC 168
- Day 8 – low-grade temp to 100.6, ANC 468
 - No therapy changes
- Continued on 14 days of IV Cefepime & Tobramycin (through Day 15)
- Day 12 – new Hickman catheter placed
- Day 16 – discharged home, ANC 1302
Questions?

Special thanks to:

Dr. Joan Fisher
Pediatric Hematology/Oncology
Stanford Children’s @ CPMC

Dr. Louise Lo
Pediatric Hematology/Oncology
Stanford Children’s @ CPMC

Dr. Francesca Geertsma
Pediatric Infectious Diseases
Stanford Children’s @ CPMC

References

• Delebarre, M., Garnier, N., Muller, E., Tissot, E., Maingas, F., Lehmann, P., ... Seube, F. (2013). Which Variables are Useful for Predicting Severe Infection in Children with Febrile Neutropenia? Journal of Pediatric Hematology-Oncology, 35, 468-472. doi: 10.1097/MPH.0b013e3182a5d8e6

